If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+13x=41
We move all terms to the left:
24x^2+13x-(41)=0
a = 24; b = 13; c = -41;
Δ = b2-4ac
Δ = 132-4·24·(-41)
Δ = 4105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{4105}}{2*24}=\frac{-13-\sqrt{4105}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{4105}}{2*24}=\frac{-13+\sqrt{4105}}{48} $
| 3(x+2)3=5x-2(-4+x) | | -3x+14=18-5x | | (x−12)2=94 | | 83=35^x | | -14+38=-4(x+5) | | 52=-x | | 0.5(3x+87)=1.5x+43.5 | | 2/3(3x+9=4(x-15) | | -13+38=-4(x+5) | | 5(x-9)-9=-54 | | -7-3x-1=17 | | 4x-11=7+20 | | 6x^2−6x−2=0 | | 5t+16=6t-5 | | 1-4x+4=-1+6x-7-7 | | -8k+1=-2(4K-7) | | 57=53^x | | 4x+2x+7=61 | | 7y+14y+21=0 | | 11+1=-2(5x-6) | | x^2+3x+12x-4=180 | | 8-4x=-1x+20 | | t=5-(7)+2 | | 3(5c-4=8c+2 | | X+4/9y=20/9 | | 4m-28m+40=0 | | 5(x-4)-7=2(x-3) | | 13+6+2x+-18=4x-29 | | 10+1.50x=12.50+x | | 2-3.2=x-3.1 | | 7=1/6(8x+24) | | WxL=36 |